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Transient vaporization and burning in dense droplet arrays

Randall T. Imaoka, William A. Sirignano *

Department of Mechanical and Aerospace Engineering, University of California, Irvine 3202 Engineering Gateway,

Irvine, CA 92697-3975, United States

Received 14 April 2005; received in revised form 21 May 2005
Available online 28 July 2005
Abstract

Three-dimensional droplet-array combustion with an unsteady liquid-phase and a quasi-steady gas-phase is studied
computationally by a generalized approach using a mass-flux potential function. Symmetric and asymmetric droplet
arrays with non-uniform droplet size and non-uniform spacing are considered. Burning rates are computed and corre-
lated with the number of droplets, an average droplet size, and an average spacing for the array through one similarity
parameter for arrays as large as 1000 droplets. Total array vaporization rates are found to be maximized at a specific
droplet number density that depends on liquid volume within the array. An unsteady liquid-phase model with either a
uniform or a radially varying temperature distribution is coupled with the quasi-steady gas-phase solution for decane,
heptane, and methanol fuels. Droplet interactions and liquid-phase heating have been shown to almost double the life-
time when compared to an isolated droplet. Depending on fuel type, initial temperature, and array geometry, droplets
may initially burn with individual flames, transition to a single group flame, and transition back to individual flames as
vaporization progresses. In most cases, group combustion occurs upon ignition and is the dominant mode of
combustion.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fuel droplet vaporization and burning rates are
known to be influenced by the presence of neighboring
droplets. Labowsky transformed the governing equa-
tions into Laplace�s equation for a potential function
and studied vaporization without Stefan convection
[1], vaporization with Stefan convection [2], and com-
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bustion [3]. Two-drop arrays were studied analytically
by Umemura et al. [4,5], Brzustowski et al. [6], Twardus
and Brzustowski [7], and numerically by Sivasankaran
et al. [8]. Marberry et al. [9] considered up to 8-droplets
in a manner similar to the method-of-images, with an
approximation made to account for the effects of neigh-
boring droplets. Elperin and Krasovitov [10] solved
Laplace�s equation using a similar method, but used
higher order corrections to account for the effects of
neighboring droplets. More recently, Imaoka and Sirig-
nano [11] solved the three-dimensional Laplace�s equa-
tion using finite-difference computations for symmetric
arrays of up to 216 droplets. A correlation for array
vaporization rates was given in terms of a similarity
ed.
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Nomenclature

a droplet radius
B transfer number
cp constant pressure specific heat
d inter-droplet spacing
D binary diffusion coefficient
h specific enthalpy
L latent heat of vaporization
Leff effective latent heat of vaporization
_m mass vaporization rate
N number of droplets
_q magnitude of heat flux
Q heating value per unit mass of fuel
r radial coordinate
t time
T temperature
V volume
~V mass-averaged velocity vector
Y mass fraction

Greek symbols

a thermal diffusivity
g normalized vaporization rate
k thermal conductivity
m stoichiometric fuel to oxidizer mass ratio

n similarity parameter
q mixture density
U normalized potential function
UB bifurcation contour
UF flame contour

Subscripts

0 initial value
1 ambient value
A array
avg average
eq equivalent value
F fuel
i inner
iso isolated droplet
j the jth droplet
l liquid
max maximum
min minimum
o outer
O oxidizer
opt optimal
S surface value
WB wet-bulb
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parameter incorporating array spacing and the number
of droplets. Quasi-steady flame shapes and flame posi-
tions were also obtained.

The transformation of the governing equations to a
three-dimensional Laplace�s equation is not restricted
to symmetric, mono-sized, or uniformly-spaced arrays.
However, literature on quantitative variations of indi-
vidual droplet sizes or locations within an array has been
limited to three-drop arrays. Studies of larger asymmet-
ric droplet arrays have not been performed. Although
the image methods in [3,9,10] are all capable of dealing
with more ‘‘realistic’’ droplet arrays, they will encounter
difficulty when relative droplet spacing is small, and/or
the number of droplets is large [11]. In contrast, for a
fixed number of droplets, a finite-difference solution con-
verges faster for dense arrays than sparse arrays (due to
fewer nodes), making it superior for problems involving
strong droplet interactions. In this paper, solutions for
burning rates in dense asymmetric arrays are obtained
using both finite-difference computations and, when
possible, the method-of-images. Flame shapes and loca-
tions, however, can be computed more easily by finite-
differencing than by the image method.

Despite the extensive literature available on droplet-
array burning, research on unsteady droplet-array
burning with liquid-phase heating has not been docu-
mented. Law [12] and Law and Sirignano [13] discussed
unsteady droplet burning for a single, isolated droplet
using different liquid-phase heating models. In this pa-
per, a quasi-steady gas phase is coupled with an unstea-
dy liquid phase for decane, heptane, and methanol
arrays of up to eight droplets. The effects of ambient
temperature and ambient oxidizer mass fraction are
noted. Conduction-limit and infinite-liquid-conductivity
[14] models are implemented in the liquid-phase, and
compared to vaporization without liquid heating. Drop-
let size, liquid temperature distributions, flame shapes,
and flame locations are obtained over the lifetime of
the arrays.
2. Gas-phase problem formulation

The assumptions and gas-phase analysis follow the
generalized formulation in [15]. The potential function
U governing mass flux in the gas-phase satisfies Laplace�s
equation and the following boundary conditions.

r2U ¼ 0
U ¼ 0 on droplet surfaces

U ¼ 1 far from the droplets.

�
ð1Þ

The solution to (1) with the desired droplet geome-
try yields the effect of droplet interactions. Enthalpy,
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composition, flame contour location, and the quantity
qD are obtained through the simultaneous solution of
the following equations:

ð1þ BÞqD
R U

0

dU0
k=cp ¼ 1þ h� hS þ mQY O

Leff

¼ 1þ Y F � Y FS � mY O

Y FS � 1
ð2Þ

qD ¼
Z 1

0

dU0

k=cp

� ��1

ð3Þ

ln 1� Y FSð Þ
ln 1þ Bð Þ ¼ �qD

Z UF

0

dU0

k=cp
ð4Þ

With a unitary Lewis number, the quantities qD and
k/cp are equal and will be used interchangeably. The
Spalding transfer number B is computed as

B ¼ h1 � hS þ mQY O1
Leff

¼ mY O1 þ Y FS

1� Y FS

; ð5Þ

Leff ¼ Lþ _ql
jq~V jS

. ð6Þ

Vaporization rates are obtained by integrating the
mass flux over the surface of the droplets. For the jth
droplet,

_mj ¼ qD lnð1þ BÞ
Z Z

rU � d~Aj. ð7Þ

A normalized vaporization rate gj is defined as the ac-
tual vaporization rate of the jth droplet divided by the
vaporization rate of an isolated droplet vaporizing in
an identical environment.

gj ¼
_mj

_miso

¼ 1

4paj

Z Z
rU � d~Aj ð8Þ

A normalized array vaporization rate gA is computed
as the average of gj over all droplets in the array. Eqs.
(1)–(8) are taken directly from [15], where (2)–(6) are
independent of the droplet array size and configuration.
In contrast, Eqs. (1) and (8) depend only on geometry
and not on fuel type or boundary conditions. Therefore,
solutions for the scalar variables and transport proper-
ties become one-dimensional in terms of U. The three-
dimensional analysis is only necessary in solving Eq.
(1). Computing actual vaporization rates from (7) will
require a specified geometry, boundary conditions, and
fuel type.

Solutions for the normalized potential function U are
obtained by solving Laplace�s equation in the gas-
phase. A finite-difference scheme, with a composite grid
consisting of spherical-polar and Cartesian coordinate
systems is used. Vaporization rates are obtained by
numerically integrating $U over the droplet surfaces.
For arrays with few droplets and/or arrays with
large droplet spacing, solutions are obtained using the
method-of-images. Details regarding the numerical
scheme, boundary conditions, and criteria for conver-
gence and feasibility of a method-of-images solution
can be found in [11].

In the literature pertaining to multiple droplet arrays,
vaporization rates are usually normalized as in Eq. (8).
Therefore, specification of fuel type, boundary condi-
tions, or any gas-phase transport properties were not
required for the non-dimensional vaporization rates.
Such analyses only assess the geometrical aspects of
droplet array burning by solving Eqs. (1) and (8). Fur-
thermore, only mono-sized arrays were considered
for more than three droplets. The normalized vaporiza-
tion rate given by Eq. (8) does not depend on thermo-
physical properties and has the same value for
constant properties as for variable properties. Flame
contours prior to [11] had only been presented for
two-drop arrays. The use of a constant value for qD
has been shown to significantly overestimate flame
stand-off distances [15]. In this paper, quasi-steady
vaporization rates in asymmetric arrays with variable
droplet-size are obtained, and correlated with previous
findings for symmetric, mono-sized arrays. Using an
average droplet size and average droplet spacing, vapor-
ization rates are shown to be optimized with a specific
number of droplets. Changes in flame topology due to
inter-droplet spacing and variations in droplet radii are
demonstrated. Unsteady vaporization with and without
liquid-phase heating is studied for decane, heptane, and
methanol droplets. Time-varying flame contours are pre-
sented. Throughout this paper, variable (temperature
and composition dependent) gas-phase properties are
used.
3. Quasi-steady vaporization rates of asymmetric arrays

3.1. Effect of droplet spacing

In order to study the effects of droplet spacing, drop-
let radii, and array configuration on the total array
burning rate, the effects of each parameter are analyzed
individually. To find the effects of droplet spacing, an
N-droplet array with constant droplet radius is stretched
initially in one coordinate direction, then simultaneously
in two coordinate directions. Calculations were per-
formed for more than 50 different droplet arrays of 9,
27, and 64 droplets, as well as droplets arranged in a
30-drop pyramid to study the effects of asymmetry. 27-
and 64-drop arrays are cubic or rectangular arrays with
three and four droplets along an edge of the rectangular
volume. A 9-drop array consists of an 8-drop array with
one additional droplet at the center of the array. The ar-
rays were elongated in various increments so that the
largest droplet spacing exceeded the smallest droplet
spacing by at least a factor of 3; however, the droplet
spacing was uniform in each of the three directions with-
in the array. Droplet spacings varied between 3 and 50



Fig. 1. The droplet arrangement and spacing for a 9-drop
rectangular array with variable radii and non-uniform spacing.

(a)

(b)

Fig. 2. Normalized array vaporization rates versus the similar-
ity parameter n. (a) Non-uniform spacing and (b) variations in
droplet radii.
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radii. The configuration of a rectangular 9-drop array is
shown in Fig. 1.

Previous results from [11] have shown that, in a 125-
drop mono-sized cubic array with d/a = 3, the outer-
most droplet will vaporize more than 5000 times faster
than the central droplet of the array. However, while
not previously mentioned, the induced Stefan velocity
leaving the array might further enhance the burning
rates of the outer droplets, making the factor of 5000
a conservative estimate. At that same spacing but with
1000 droplets, the difference is more than a factor of
107. Since the current problem formulation permits only
normal velocities at the droplet surfaces, the effects of
very strong blowing velocities from the inner droplets
creating boundary layers over the outer droplets are
not included in the analysis. The orders of magnitude
difference in vaporization rates of the inner droplets ver-
sus the outer droplets supports the neglect of this effect.
Results from [11] also indicate that vaporization rates
for symmetric droplet arrays with uniform droplet radii
and spacing correlate well with a similarity parameter n
given by,

nðd=a;NÞ ¼ d

aN 0.72 . ð9Þ

Uniform arrays consisting of 8–216 droplets were
studied in [11], but more recent unpublished results show
good correlations with up to 1000 droplets. A relation-
ship between the array vaporization rate gA and the sim-
ilarity parameter n was found as,

gAðnÞ ¼ 1� 1

1þ 0.725671n0.971716
. ð10Þ

The first-term on the RHS in the above equation
represents the normalized array vaporization rate in
the absence of droplet interactions. The denominator
of the second term, through the similarity parameter n,
embeds implicitly the effect of the interactions.

To utilize Eqs. (9) and (10) for droplet arrays with
non-uniform spacing, the average center-to-center dis-
tance to be used in Eq. (9) should be computed as

d ¼ V 1=3
A

N 1=3 � 1
; ð11Þ

where VA is the array volume enclosed by a surface
drawn through the line of centers of the outermost drop-
lets. The numerical value of d obtained using (11) repre-
sents the spacing that would be obtained if the array
were reconfigured into a symmetric array with uniform
spacing. As a result, (11) applied to symmetric, cubic ar-
rays with uniform spacing and three planes of symmetry
will yield the correct spacing. Normalized vaporization
rates for the aforementioned 9-, 27-, 30-, and 64-drop ar-
rays with non-uniform spacing are shown as calculated
from Eqs. (9) and (11) in Fig. 2a. The agreement be-
tween the vaporization data and Eq. (10) shown in
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Fig. 2a can be attributed to the parameter dmax/dmin.
When dmax/dmin is larger than �3, and d is computed
with Eq. (11), vaporization rates may not be accurately
predicted by (10). This disagreement arises when a three-
dimensional array is stretched substantially in one or
two directions, and affects both uniform and non-
uniform arrays. Therefore, vaporization rates for arrays
consisting of droplets in a line or in a plane are not pre-
dicted well. If only a few droplets within the array have
exceptional spacing but the overall external geometry of
the array is still somewhat three-dimensional, (11) might
still be valid since a local extremum of spacing will have
a small effect on average. Furthermore, the validity of
Eq. (11) does not depend strongly on the positions of
individual droplets within the array and therefore, does
not consider the details of any non-uniformity in droplet
spacing within the array.

3.2. Effect of droplet radii

To isolate and identify the effects of droplet radii
variations, asymmetric or non-uniformly spaced arrays
were not considered simultaneously with radii varia-
tions. Cubic arrays of 9, 27, 64, and 125 droplets, were
separated into inner and outer regions, with droplet ra-
dii varying between these regions. The inner regions in
each of the arrays consisted of 1, 1, 8, and 27 droplets,
respectively. The ratio of inner droplet radius, ai, to
outer droplet radius, ao, was varied from 0.25 to 10.0
for more than 90 different droplet arrays with 3 <
d/amax < 50. Since individual-droplet vaporization rates
will be largest for the outermost droplets of an array
[11], emphasis was placed on arrays with ai/ao > 1.

Eqs. (9) and (10) both require information on droplet
radius. For arrays with non-constant droplet radii, a
characteristic radius, aavg, was computed as a linear
average of the individual-droplet radii

aavg ¼
1

N

XN
j¼1

aj. ð12Þ

For a finite number of droplets with infinite droplet
spacing, the total vaporization rate of the array will be
4pqD lnð1þ BÞ multiplied by the sum of the droplet ra-
dii. Therefore, it is not surprising that a good correlation
is achieved with a linear average. By varying ai/ao with
different array geometries and taking the linear average
of the droplet radii, the vaporization results compared
well with previous results for mono-sized arrays. These
results and Eq. (10) are shown versus n in Fig. 2b. A lin-
ear average of the droplet radii gives good agreement
with Eq. (10) except for 9-drop arrays with large values
of ai/ao. However, emphasis is placed on larger, more
realistic arrays, where a better correlation was achieved.
The error between computed data and Eq. (10) for most
cases was <1% and did not exceed 5%.
3.3. Maximum vaporization rate

Although the normalized array vaporization rate gA
gives a good indication of the relative reduction in vapor-
ization rate due to interactions, the effects of droplet
spacing and droplet radii variation on the actual vapori-
zation rate are not immediately obvious due to the
normalization. From Eqs. (9) and (10), gA is a monoton-
ically increasing function of n. Therefore, for an array of
mono-sized droplets, an increase in gA could result from
either an increase in droplet spacing or a decrease in the
total number of droplets. However, both of these param-
eter changes directly affect the ratio of the volume of fuel
to the total volume of the array. In an array of droplets
occupying a volume VA with a total liquid volume Vl,
it is worthwhile to study the vaporization rates of various
arrays for a fixed value of Vl/VA.

A 3 · 3 · 3, 27-drop cubic array with uniform droplet
size and a center-to-center spacing of 7.5 droplet radii is
used as the datum. A 4 · 4 · 4, 64-drop array is con-
structed with mono-sized droplets but with the same
Vl/VA. This geometry change will result in a 6.3% in-
crease in the vaporization rate. However, a 5 · 5 · 5,
125-drop array with the same Vl/VA yields only a 5.7%
increase in the burning rate. These results show that
vaporization rates are maximized at specific droplet
number densities.

By definition of the normalized array vaporization
rate for a mono-sized droplet array and from Eq. (10)

gA ¼ _mA

4paNqD lnð1þ BÞ

¼ 1� 1

1þ 0.725671n0.971716
. ð13Þ

In (13), n can be expressed as

n ¼
4pV AN
3V l

� �1=3
ðN 1=3 � 1ÞN 0.72 ð14Þ

by utilizing Eq. (11) and by expressing average droplet
radius in terms of N and Vl. Eq. (12) then is bypassed
in determining the average radius. Substitution into
(13) and again expressing a in terms of Vl yields the
non-dimensional relation

_mA

qD lnð1þBÞV 1=3
A

¼ 4pNð Þ2=3 3V l

V A

� �1=3

1� 1

1þ0.725671

4pVAN
3V l

� �1=3

ðN1=3�1ÞN0.72

0
B@

1
CA

0.971716

0
BBBBBBBB@

1
CCCCCCCCA
.

ð15Þ
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Dividing (15) through by V 2=3
A and multiplying by

qD lnð1þ BÞ, gives the vaporization rate per unit volume
of the array

_mA

V A

¼ qD lnð1þBÞ 4pN
V A

� �2=3 3V l

V A

� �1=3

� 1� 1

1þ0.725671

4pVAN
3V l

� �1=3

ðN1=3�1ÞN0.72

0
B@

1
CA

0.971716

0
BBBBBBBB@

1
CCCCCCCCA
. ð16Þ

Eq. (15) is evaluated in Fig. 3 with Vl/VA as a parameter.
Again, the normalization process for the vaporization
rate in Eqs. (15) and (16) hides the dependence on the
thermophysical properties. The results indicate that
there exists a droplet number density at which the vapor-
ization rate is maximized for a fixed value of Vl/VA.
While it might intuitively seem that, for a given Vl/VA,
a higher vaporization rate per unit array volume will al-
ways be possible by increasing N and thereby increasing
liquid surface area, the results show that this is only true
until a critical droplet number. For an array with few
droplets, the increase in total surface area that will result
from dividing the liquid into smaller droplets will in-
crease the vaporization rate. However, beyond this crit-
ical droplet number, additional droplets will effectively
reduce the inter-droplet spacing so that a reduction in
vaporization rates is observed. As N! 1, the RHS of
(15) approaches zero asymptotically. Note that increas-
ing VA for fixed Vl and N is essentially increasing the rel-
ative droplet spacing, which will result in improved
vaporization rates. If Eq. (16) is used to find the optimal
droplet number density, the analysis will provide the
number of mono-sized droplets in the volume of the ar-
Fig. 3. The non-dimensional vaporization rate from Eq. (15)
versus N for different values of Vl/VA.
ray that would maximize vaporization rate. The size of
these droplets should be computed so that the total li-
quid volume satisfies the desired Vl/VA. Although the
present work has shown that droplet size variations
can be handled by a linear average of the radii from
Eq. (12), note that a3avg 6

1
N

PN
j¼1a

3
j . Therefore, using

Eq. (12) to remove droplet size variations will, in
general, not conserve liquid volume or the parameter
Vl/VA. Droplet-size variations are still possible as long
as the liquid volume is conserved. However, conserving
liquid volume with non-uniform droplet radii will result
in an increase in the linear average of droplet radii aavg
as the radii variation increases. This will cause a reduc-
tion in n and consequently gA. Note that Eqs. (13) and
(15), and therefore the plots in Figs. 2a, b, and 3 are nor-
malized so that they universally apply to any liquid fuel.
The results would be modified if transient heating of the
liquid interior occurs, as will be discussed later.

The optimal number of droplets, Nopt, can be found
in terms of Vl/VA through differentiation of Eq. (15).
The roots of the resulting equation are found with Vl/
VA as a parameter. The results yield an almost linear
relationship between ln(Nopt) and ln(Vl/VA). Fitting a
power curve to the results yields the following expression
for Nopt.

Nopt ¼ 11.377
V l

V A

� ��0.6047
. ð17Þ

Eq. (17) shows that the optimal number of droplets de-
pends only on the parameter Vl/VA. Therefore, an in-
crease in the array volume, coupled with an equivalent
increase in liquid volume, will have no effect on Nopt.
For typical hydrocarbon combustion at near stoichiom-
etric conditions and moderate pressures, Vl/VA will be
�10�3, indicating that the optimal number of mono-
sized, uniformly spaced droplets is approximately 800.
In most practical spray applications, N � 800.
4. Quasi-steady flame location

The solution for U directly yields information on
flame shape and location. In the limit of infinite kinetic
rate, flames will lie on the constant U surface computed
from Eq. (4). Results from previous work on symmetric,
mono-sized droplet arrays with uniform spacing [11] are
relevant here. Constant U surfaces govern the flame
shape and location, and are obtained throughout the
gas-phase for different droplet geometries. In any array
with N P 2, there exists a range of values of U for which
contour surfaces engulf more than one droplet. The low-
est U values represent contours that surround only indi-
vidual droplets. Depending on fuel type and boundary
conditions, transition between individual-droplet burn-
ing, partial group combustion, and complete group com-
bustion can be dictated by the relative droplet spacing.
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Exact flame shapes and locations for a given droplet
array can be obtained upon specification of the temper-
ature and composition of the ambience and at all droplet
surfaces. Satisfaction of Eqs. (5) and (6) with _ql ¼ 0 en-
sures the droplets are at their wet-bulb temperatures.
Previous work [11] has shown that, for droplets burning
at wet-bulb temperatures, individual-droplet flames are
very unlikely. Furthermore, it was shown that, in most
realistic arrays, flame stand-off distance was larger than
the array dimensions and a flame surrounding the array
was nearly spherical. As a result, the droplet array
burned approximately as a single, isolated droplet of
equivalent radius aeq = aNgA. Although quasi-steady,
single-droplet burning analyses tend to overestimate
flame-standoff distances compared with experimental
findings, variable properties have been shown to yield
more accurate results [15,16]. In [11], changes in flame
topology were illustrated by varying droplet surface
temperature. However, the proper determination of sur-
face temperature requires an unsteady liquid-phase anal-
ysis and will be discussed in Section 6. Changes in flame
topology are possible with droplets at wet-bulb temper-
atures by varying droplet size and spacing.

Two 5-drop arrays, each with one central droplet and
four peripheral droplets, are arranged such that all drop-
lets lie in a plane, as indicated in Fig. 4a–c. Each of the
four peripheral droplets are positioned at equal dis-
tances from the inner droplet. The ambience is at one
atmosphere pressure with T1 = 298 K and YO1 = 0.5.
From Eq. (4), and the determination of variable proper-
ties [15], the flame surface corresponds to U values of
0.7963 and 0.9078 for methanol and decane, respec-
tively, with droplet surface temperatures of 331.62 K
and 437.96 K. The flame surfaces are shown for the
5-drop, planar arrays with inner/outer droplet ratios
ai/ao of 1, 2, and 20. The results are shown in Fig. 4a–
c. for the plane of symmetry intersecting all droplet cen-
ters with the methanol flame as the solid line and the
decane flame as the dashed line.

Although 5-drop planar arrays were not used to cor-
relate data in Fig. 2a and b, their analysis illustrates the
effects of droplet size and spacing on flame positions.
Using the previously calculated UF values, Fig. 4a–c
show that the decane flame always has a larger standoff
distance than a methanol flame. In Fig. 4a, both fuels
burn with a single flame. In Fig. 4b, only methanol
burns with individual flames and in Fig. 4c, with
ai/ao = 20, both fuels burn with individual flames.
While a droplet size differential of this magnitude could
exist, it is unlikely any array would consist of only five
droplets. Increasing N would make individual flames
more difficult to observe.

Droplet spacing in a mono-sized array can also pro-
duce changes in flame topology. Using the same 5-drop
array, the distance between the central drop and two of
the four outer drops is increased, effectively stretching
the array as indicated in Fig. 5a and b. Flame shapes
are evaluated with different degrees of stretching, dmax/
dmin. With dmax/dmin = 1, the flames behave as in
Fig. 4a. Fig. 5a and b show the droplet geometry and
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flame shapes in the plane of symmetry for dmax/dmin val-
ues of 2 and 5. The solid and dashed lines give the flame
positions of methanol and decane, respectively. The fig-
ures indicate that non-uniformly varying droplet spacing
can also lead to individual-droplet flames. When dmax/
dmin = 1, complete group combustion occurs for both
fuels. As the array is stretched, partial group combus-
tion is attainable with methanol at dmax/dmin = 2, and
with decane at dmax/dmin = 5. Even at dmax/dmin = 5,
individual-droplet flames are not possible for the three
adjacent droplets in the center of the array. An increase
in vertical droplet separation is necessary to observe
individual-droplet flames for all five droplets.

It has been shown that individual-droplet flames,
partial group combustion, and complete group combus-
tion can occur as a result of changes in relative droplet
sizes and spacing while burning at wet-bulb tempera-
tures. In arrays with more than five droplets, complete
group combustion is more likely. For example, all of
the decane, heptane, and methanol droplet arrays
studied with more than nine droplets would burn
with a single flame surrounding the array. To observe
individual-droplet flames for droplets at wet-bulb tem-
peratures in larger arrays will require a much larger in-
ter-droplet spacing, or, the majority of the droplets
must be orders of magnitude smaller than a few of the
larger droplets. Still, such a situation may exist in actual
sprays as the combustion process is near completion.
Changes in flame shape due to increases in inter-droplet
spacing and surface temperatures are shown in Section
7.

5. Vaporization at wet-bulb temperature with time varying

droplet radii

In this case, _ql ¼ 0 in Eq. (6) so that Leff = L and the
relation in Eq. (5) prescribes the constant wet-bulb sur-
face temperature and the wet-bulb value of B. The
reduction in vaporization rates due to droplet interac-
tions will increase droplet lifetimes in multiple droplet
arrays. From Eqs. (7) and (8), the vaporization rate of
the jth droplet is given by

_mj ¼ _misogj ¼ 4paqD lnð1þ BWBÞgj

¼ �ql

d

dt

4pa3j
3

 !
. ð18Þ

The isolated droplet lifetime, tiso, is given by

tiso ¼
qla

2
0

2qD lnð1þ BWBÞ
. ð19Þ

Introducing the dimensionless variables t̂ ¼ t=tiso and
â ¼ a=a0, Eq. (18) can be rewritten as

dâ2j
d̂t

¼ �gj. ð20Þ

A fourth order Runge–Kutta scheme is used to inte-
grate Eq. (20) over the lifetime of the droplet. The num-
ber of time steps over one droplet lifetime was of order
104. The non-dimensional scheme makes Eq. (20) inde-
pendent of the fuel choice.
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When droplets do not experience the same interac-
tions, individual droplet lifetimes will vary. The square
of the normalized droplet radius is shown versus time
in Fig. 6 for the central and outer droplets of an initially
mono-sized, 9-drop, cubic array with d/a0 = 8, 20, and
100. These normalized results hide the effects of thermo-
physical properties. With an initial spacing of eight
droplet radii, the inner droplet of the 9-drop array has
a lifetime �75% greater than an isolated droplet. In all
cases, the eight outer droplets will have shorter life-
times than the inner drop. This effect diminishes as
droplet spacing is increased. As d/a0 !1, interactions
become negligible, â2 becomes linear as predicted by
the d-squared law, and lifetimes are given by Eq. (19).
Upon vaporization of the outer drops, the surface area
of the single remaining drop decreases linearly in time.
6. Unsteady vaporization with liquid-phase heating

Now, liquid-phase heating is included in the analysis
by solving the diffusion equation within the droplets. It
is assumed that liquid temperature varies only radially
within any droplet. Furthermore, droplet interactions
must be identical for each droplet in the array. Uniform
surface temperatures with _ql varying over the droplet sur-
faces is a reasonable approximation. Variations in sur-
face tension with temperature would create an internal
convection that would tend to remove temperature gradi-
ents along the droplet surface [14]. With these assump-
tions, a 1D diffusion equation for the liquid-phase is
coupled with the quasi-steady gas-phase to incorporate
liquid-phase heating in equal-interaction arrays.

The spherically symmetric diffusion equation, with
constant liquid thermal diffusivity al

oT
ot

¼ al
r2

o

or
r2
oT
or

� �
; ð21Þ

is made non-dimensional using the variables t̂ ¼ t=tiso,
r̂ ¼ r=a, and â ¼ a=a0. The isolated droplet lifetime tiso
is given by Eq. (19). Note that the droplet radius a is
now time-varying. Incorporating these dimensionless
variables, Eq. (21) becomes

oT
ôt

¼ altiso
ða0âÞ2

o2T

or̂2
þ 2altiso

ða0âÞ2r̂
þ r̂

2â2
dâ2

d̂t

 !
oT
or̂

. ð22Þ

The transformation to r̂ removes the moving boundary
associated with droplet surface regression. A modifica-
tion is made to Eq. (20) to compensate for the droplets
not being at the wet-bulb temperature.

dâ2

d̂t
¼ � lnð1þ BÞ

lnð1þ BWBÞ
gA ð23Þ

The time-varying Spalding transfer number B depends
on the instantaneous heat flux into the liquid and the
surface temperature, which is now lower than the wet-
bulb temperature. B should be computed with the sec-
ond relationship in Eq. (5). Eqs. (5) and (6) together
with a phase-equilibrium relation determine _ql as a func-
tion of surface temperature; this conductive heat flux
provides the droplet surface boundary condition.

oT
or̂

����
r̂¼1

¼ qD
kl

lnð1þ BÞ h1 � hS þ mQY O1
B

� L
� �

gA.

ð24Þ

Eq. (24) is the non-linear relationship between the drop-
let surface temperature (through B, hS, qD, and kl), and
the temperature gradient at the droplet surface. Due to
spherical symmetry, zero gradient exists at the droplet
center. An average heat flux �_ql defines the rate of droplet
heating.

�_ql ¼
1

4pa2

Z Z
_ql � d~A ¼ kl

a
oT
or̂

����
r̂¼1

ð25Þ

This analysis assumes negligible internal liquid
circulation and will therefore be termed a conduction-

limit model, as in previous work [13]. As kl ! 1, tem-
peratures will be time-varying but spatially uniform
throughout the droplet. This will be referred to as an
infinite-conductivity model [14]. Solutions to Eq. (22)
and the surface boundary condition (24) are obtained
using a Crank–Nicholson scheme, with a minimum of
100 radial nodes in the liquid and �104 time steps over
the droplet lifetime. Eq. (23) is integrated using a fourth
order Runge–Kutta scheme with gA computed either
numerically or with the method-of-images when pos-
sible. Decane, heptane, and methanol fuels were con-
sidered, and all droplets started with a uniform
temperature distribution. The values for qD used in
(24) were computed with the correlations in [15]. Unlike
combustion at wet-bulb temperatures, the incorporation
of liquid-phase heating does not permit the results to
apply universally to all fuels.

Decane droplet interactions were shown in Fig. 6 to
reduce vaporization rates and increase droplet lifetimes
for droplets at wet-bulb temperatures. Liquid-phase
heating further reduces droplet burning rates. Normal-
ized radius squared with and without droplet heating
is shown versus dimensionless time in Fig. 7a–c for
8-droplet cubic arrays with T0 = 298 K and initial spac-
ings of 6, 10, and 50 radii. Decane surface temperatures
and liquid-heating rates are shown for one isolated
droplet lifetime in Fig. 8a and b.

As droplet spacing decreases, liquid-phase heating
persists over a larger fraction of the droplet lifetime.
Fig. 7a–c demonstrate the influence of droplet spacing
on burning rates for these fuels when liquid-phase heat-
ing is included. Liquid-phase heating increases isolated
droplet lifetimes by 19.2%, 9.7%, and 2.4%, for decane,
heptane, and methanol, respectively. For eight droplets



(a)

(b)

(c)

Fig. 7. Radius squared versus time for 8-drop, cubic arrays
with T0 = 298 K, T1 = 298 K, and YO1 = 0.231. (a) Decane;
(b) heptane and (c) methanol.

(a)

(b)

Fig. 8. Temperature (a) and average conductive heat flux (b) at
the droplet surface versus time for eight decane drops with
T0 = 298 K, T1 = 298 K, and YO1 = 0.231.
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with d/a0 = 6, droplet lifetimes are increased by factors
of 1.96, 1.8, and 1.67 for the three fuels. With decane,
a decrease in initial spacing from 10 to 6 radii results
in a 18% increase in droplet lifetime. This sensitivity to
droplet interactions for small droplet spacing comes
from the reduction in both mass and heat transfer at
the droplet surfaces through Eqs. (23) and (24). The re-
duced transport at the droplet surfaces due to droplet
interactions is dictated by gA, which yields the reduction
in the Nusselt and Sherwood numbers relative to an iso-
lated droplet at wet-bulb temperature. Note the smaller
initial heat flux for denser arrays in Fig. 8b. The correc-
tion for the droplets not being at wet-bulb temperature
is contained in B. Interactions would have a greater ef-
fect if the current array were larger than eight droplets
and/or the initial spacing were reduced. Droplet interac-
tions will be even greater in actual sprays.

The two liquid-phase models predict different droplet
lifetimes [14]. With the conduction-limit model, surface
temperatures increase rapidly in the presence of a flame,
while the droplet core temperature remains largely unaf-
fected. These higher surface temperatures, while advan-
tageous for increasing vaporization rates, decrease the
rate of liquid-phase heating. Now, the increased heating
rate from the infinite-conductivity model will lead to a
greater surface temperature and burning rate as combus-
tion proceeds, resulting in shorter lifetimes. Due to
lower wet-bulb temperatures of methanol, liquid-heating
does not hinder burning rates as substantially as with the



4364 R.T. Imaoka, W.A. Sirignano / International Journal of Heat and Mass Transfer 48 (2005) 4354–4366
other fuels. This is demonstrated in Fig. 7c, where the
difference between the two models, and with no liquid-
heating, is less dramatic.

Fig. 8b indicates that the rate of liquid-phase heating
increases initially upon ignition for both liquid-phase
models with decane droplets. This is caused by the sig-
nificant increase in qD ¼ k=cp with increasing surface
temperature [15]. During the initial period, the sum of
the energy used to vaporize the droplet and that used
to heat the liquid interior increases, providing the in-
creased rate of droplet heating despite a decreasing tem-
perature difference between the ambient gas and the
droplet surface. The increase in the rate of liquid-phase
heating occurs over a shorter time interval with the con-
duction-limit model because surface temperature and
composition respond faster with this model.

Normalized radius squared versus time is shown in
Fig. 9 for decane droplets with different ambient oxidizer
mass fractions using the conduction-limit model.
Fig. 9. Normalized radius squared versus time for decane drops
with T0 = 298 K and T1 = 298 K. Conduction-limit model.

Fig. 10. Dimensionless isolated droplet lifetimes are shown
versus ambient oxidizer mass fraction.
Dimensionless isolated droplet lifetimes are shown in
Fig. 10 versus ambient oxidizer mass fraction for the
three fuels with T1 = 298 K and T1 = 1000 K. A higher
ambient oxidizer concentration lowers isolated droplet
lifetimes through qD. Fig. 9 further shows that, with
liquid-heating, normalized lifetimes are also reduced
with increasing YO1. Heptane and methanol followed
the same trend, but were less sensitive to changes in
YO1. Previous findings [15] show that ambient tempera-
ture T1 had less of an effect on gas-phase properties
than YO1. Therefore, while isolated droplet lifetimes
will vary, normalized droplet lifetimes and flame loca-
tion will not depend strongly on ambient temperature.
7. Unsteady flame position

The flame contour surface is determined by Eq. (4).
In [11], flames were found to depend strongly on droplet
surface temperature, which affected flame topology.
With liquid-heating, changes in surface composition
resulting from increasing liquid temperatures can cause
a transition from individual-droplet flames to group
combustion. Fig. 11 shows this transition for a planar,
4-drop array with decane droplets, at an initial temper-
ature of 298 K and initial spacing of five radii. Flame
contour values UF and the contour value associated with
bifurcation, UB, are shown in Fig. 12 versus instanta-
neous droplet spacing d/a for decane, heptane, and
methanol, with the same initial geometry as in Fig. 11.
Time has been removed from the abscissa to enable
comparison between the fuels. Note that UB is only a
function of array geometry. Individual flames will be
present if UF < UB. The UF values used in the figures
were obtained using the correlations provided in [15].
Fig. 11. Flame contours for a 4-drop, decane array with d/a0 =
5, T0 = 298 K, T1 = 298 K, and YO1 = 0.231. Conduction-
limit model.



Fig. 12. Change in flame shape versus instantaneous droplet
spacing for various fuels in a 4-drop array with d/a0=5, T0 =
298 K, T1 = 298 K, and YO1 = 0.231. Conduction-limit model.
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The transition to group combustion shown in Fig. 11 oc-
curs at less than 0.2% of the droplet lifetime. Conse-
quently, group combustion is present over most of the
array lifetime. As indicated by the inset in Fig. 12, hep-
tane and methanol droplets with the same array geome-
try and ambience will burn as a group upon ignition.
For arrays with non-uniform droplet interactions, multi-
ple values of UB may exist.

While only decane droplets initially burn with indi-
vidual-flames, all three fuels will burn with a single flame
for most of their lifetime, and transition to individual-
flames toward the end of their lifetime. The effective
increase in spacing caused by the reduction in droplet
size leads to isolated droplet behavior. However, transi-
tion to individual-flames occurs after the majority of
the liquid volume has vaporized, and may have little
effect on the overall combustion process. As previ-
ously mentioned, the individual-droplet flames encoun-
tered with decane upon ignition exist initially for less
than 0.2% of the droplet lifetime. Since we do not ana-
lyze the ignition process in proper detail, this early
behavior might not be well described.
8. Conclusions

Three-dimensional droplet-array combustion with
liquid-phase heating and variable thermophysical prop-
erties has been studied computationally with a general-
ized approach using a mass-flux potential function.
Methods for computing an average droplet size and
spacing enable quasi-steady vaporization rates to corre-
late well with existing data for symmetric, mono-sized
arrays with uniform spacing. Vaporization rates are
maximized at specific droplet number densities that de-
pend only on the ratio of liquid volume to total array
volume. Based on these findings, which do not address
situations with forced convection, typical droplet burn-
ing applications would benefit from a reduction in drop-
let number density and an increase in droplet size at
fixed liquid volume. An unsteady liquid-phase model
with either a uniform or a radially varying temperature
distribution in the liquid is coupled with the quasi-steady
gas-phase solution for decane, heptane, and methanol
droplet arrays. Droplet interactions are shown to have
an effect on vaporization even in the absence of liquid
heating. With droplet interactions, liquid-phase heating
has been shown to nearly double the lifetime of a single,
isolated droplet. Changes in flame shapes and flame
locations are demonstrated at wet-bulb temperatures
through variations in array geometry, and by surface
temperature changes due to transient liquid-phase heat-
ing. Although individual-droplet flames are possible at
the initiation and termination of combustion, for most
practical arrays, a single flame will exist over most of
the lifetime.
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